Molecular Diagnosis in β-thalassemia

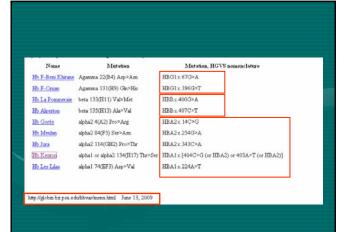
中國醫藥大學附設醫院檢驗醫學部 Department of Laboratory Medicine, CMUH 施<u>波彰 Shih HC</u>

31 July, 2009

Thalassemia

- Thalassa (Greek letter) = the sea
- Defective globin synthesis,
- **Normal** $\alpha = \beta (\alpha/\beta = 1)$
- The alpha (α) thalassemias are concentrated in Southeast Asia, Malaysia, and southern China.
- The beta (β) thalassemias are seen primarily in the areas surrounding Mediterranean Sea, Africa and Southeast Asia.
- *α* -thalassemia: usually caused by gene deletion, 3-5% in Taiwanese
- β-thalassemia: usually caused by gene mutations, 1-3% in Taiwanese

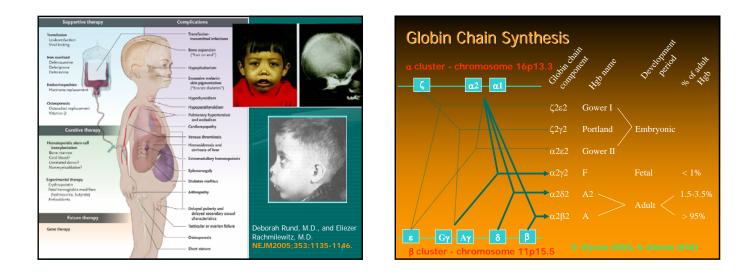
200 mutations in β-hemoglobin genes lead to β-thalassemias.
80 deletions and point mutations in α-

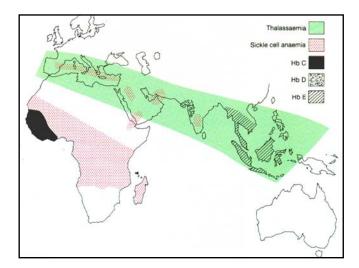

globin genes result in α -thalassemias.

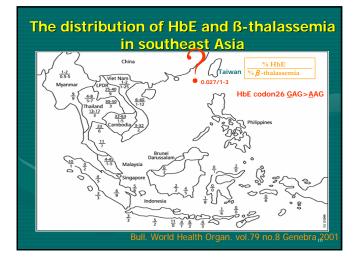
Weatherall, D. J. & Clegg, J. B. *The Thalassaemia* Syndromes 4th edn (Blackwell Science, Oxford, 2001)

HbVar: A Database of Human Hemoglobin Variants and Thalassemias Summaries of mutation categories

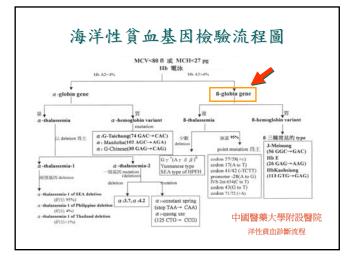
Query	Count of results	Button to view results
Total entries in database	1361	View summary table
Total hemoglobin variant entries	1018	View summary table
Total thalassemia entries	393	View summary table


http://globin.bx.psu.edu/cgi-bin/hbvar/counter




Thalassemia in Antiquity

Choirokoitia(斎伊魯科蒂亞) 7000 BC: Over 150 graves, 47% of children. Died of disease of nd thalassemia.


	eta - Thalassemia				
Clinical Syndrome	Genotype	Hgb (g/dl)	Hgb Analysis		
Minor (Trait)	β/β^+ or β/β°	10-13	↑ Hgb A2, ↑ Hgb F		
Intermedia	β^+/β^+	7-10	↑ Hgb A2, ↑↑ Hgb F		
Major	β^+/β° or β°/β°	< 7	↑ Hgb A2, ↑↑↑ Hgb F		
$\beta^{\circ} = No \beta$ globin $\beta^{+} = Decreased \Gamma$					
			12		

Incidence of Hemoglobin Variants in Taiwan

- **Hb** CS $\Rightarrow \alpha^{3.7}$ deletion 0.5%
- Hb J-Meinung (J-Bangkok, Korat) 0.065%
- ■Hb G-Taichung 0.049%
- ■Hb E 0.027%
- Hb Kaohsiung (Hb New York) 0.022%
- Hb G-Taiwan-Ami 0.57% in Ami tribe

Clinical Diagnosis of Hemoglobin Gene Mutation

	lpha - thalassemia	eta - thalassemia	Hb variant
MCV	≦80 fl	≦80 fl	Normal
МСН	≦27 pg	≦27 pg	Normal
Hb EP	A2<3.5	A2≧3.5	$lpha \rightleftharpoons 25\%$ $eta \leftrightarrows 50\%$
Ferritin	Normal	Normal	Normal

Hemoglobin

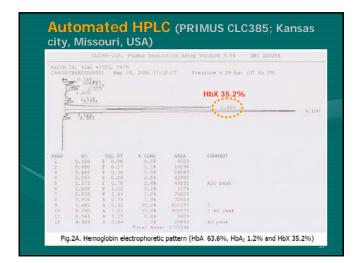
instructions for authors and subscription information: /smpp/title~content=t713597254 Hb Hekinan in a Taiwanese Subject: A T Substitution at Codon 27 of the α1-Globin Gene Abolishes an HaeIII

Site Hung-Chang Shih ^{ab}, Mu-Chin Shih ^a, Yu-Chang Chang ^a; Ching-Tien Peng ^{ac}; Ten-Jye Chang ^b; Jan-Gowth Chang ^d ^aDepartment of Laboratory Medicine, China Medical University Hospital, Taichung,

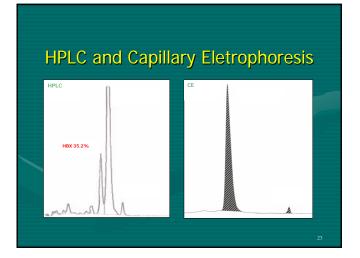
Taiwan ^b Department of Veterinary Medicine, National Chung Hsing University, Taichung,

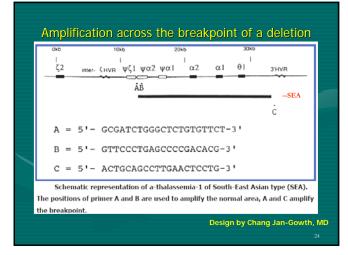
Taiwan ° Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan ^d Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan

Online Publication Date: 01 October 2007 To cite this Article: Shih, Hung-Chang, Shih, Mu-Chin, Chang, Yu-Chang, Peng, Ching-Tien, Chang, Tien-Jye and Chang, Jan-Cowidt (2007) the Heikinan in a Taiwanese Subject: A T Substitution at Codon 27 of the d1-Globin Gene Abolishes an Haelil Site; Hemoglobin, 314, 495–498 To link to this antice: DOI: 10.1080/03630260701590368 URL: <u>http://dx.doi.org/10.1080/03630260701590368</u>



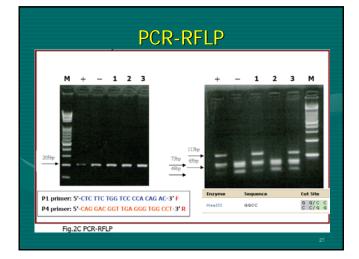
- CBC data was collected using a full automated blood cell counter (Sysmex XE-2100 combine with SP-1000i series; Sysmex Co., Chuo-Ku, Kobe, JAPAN).
- Hemoglobin (Hgb) analysis was used electrophoresis by automated HPLC (PRIMUS CLC385; Kansas city, Missouri, USA) as shown in Fig. 2A.

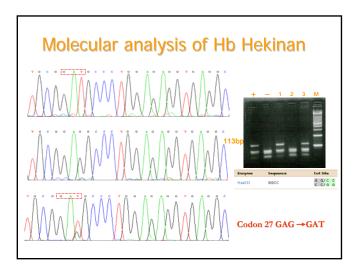

Items Name	RBCx10*3/ul M:4.5-5.5 F:4.0-4.5	Hgb gm/dl M:14.0-18.0 F:12.0-16.0	Hct % M:39-52 F:35-48	RDW 11.5-14.5	MCV fl 80-99	MCH pg 27-31	MCHC g/dl 33-37	Ferritin ng/m M:17.9-464 F:
楊X龍	5.73 †	12.8	39.0	15.2 †	68.1 ↓	22.3 ↓	32.8 🗍	218
楊XX秋	4.94 🕇	10.2 ↓	34.1 ↓	17.4 †	69.0 ↓	20.6 ↓	29.9 🗼	521 †
楊X穎	4.57	9.9 ↓	33.3 ↓	17.0 †	72.9 ↓	21.7 ↓	29.7 ↓	2.58 ↓

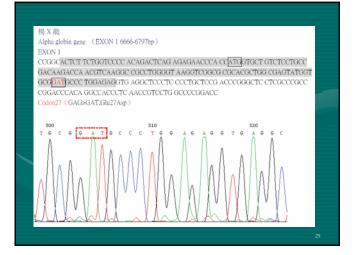

CBC and Ferritin data

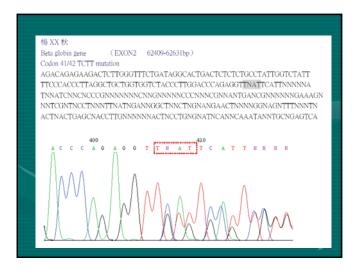
楊X穎10 yr-old Peripheral smear Note: Hypochromia + Microcytosis + Anisocytosis +

Items Name	HbA 96-98%	HbA2 1.5-3.5%	HbF <1.0%	Hb X
楊X龍	63.5	1.2	0.1	35.2
楊XX秋	91.1	6.0	2.9	
楊X穎	82.5	2.5	0.3	14.7

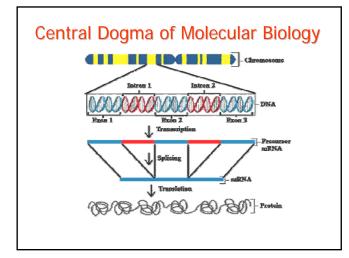


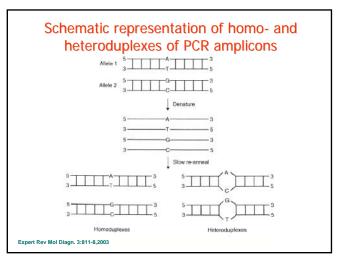


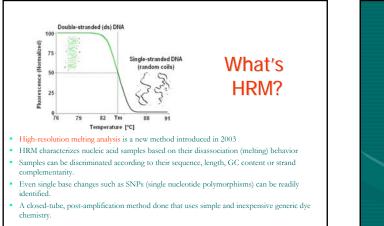

Selective amplification of the *α*1-globin and *α*2-globin exon1 genes was performed using specific primers:
 P1F (5'-CTC TTC TGG TCC CCA CAG AC-3')
 P4R (5'-CAG GAC GGT TGA GGG TGG CCT-3')

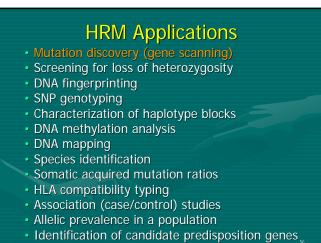

PCR products were analyzed on an ABI PRISM 310 Genetic Analyzer (Applied Biosystems Co., Foster City, California, USA)

Restriction enzyme				
Enzyme	Sequence	Cut Site		
HaeIII	GGCC	G G/C C C C/G G		

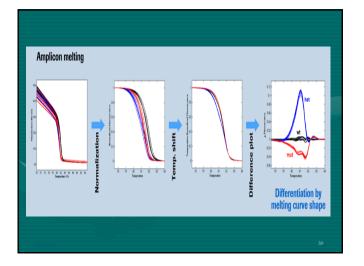


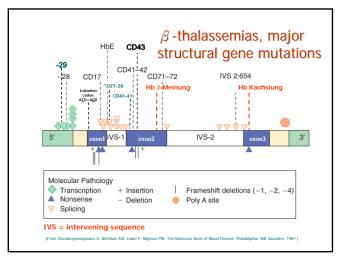




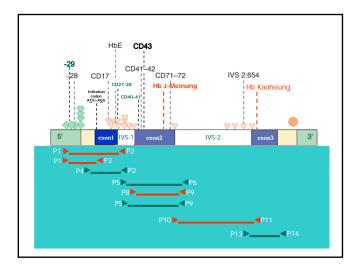


Rapid molecular identification of βthalassemia using high resolution melting analysis

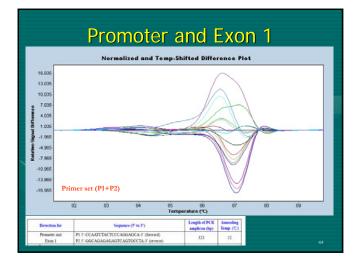


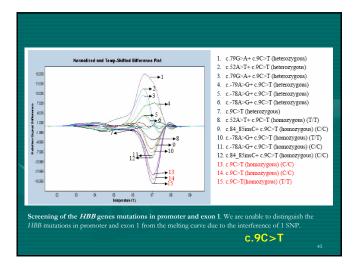


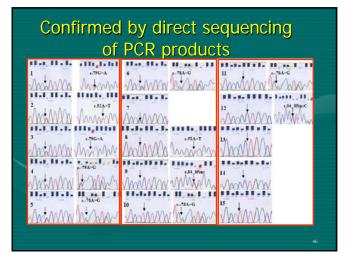
HRM Workflow in the LC480®

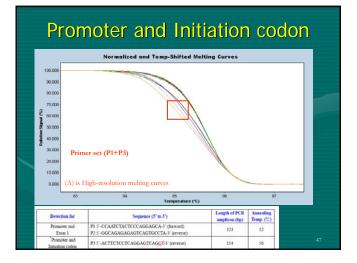

- In a Gene Scanning experiment, sample DNA is first amplified via real-time PCR in the presence of a proprietary saturating DNA dye.
- A melting curve is then performed using high data acquisition rates, and data are finally analyzed using a Gene Scanning Software, by three basic steps

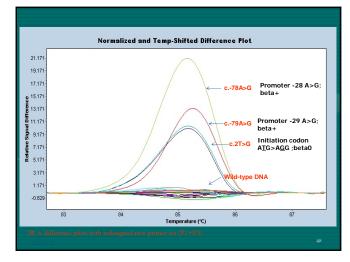
Normalization/Temperature shifting/Difference Plot

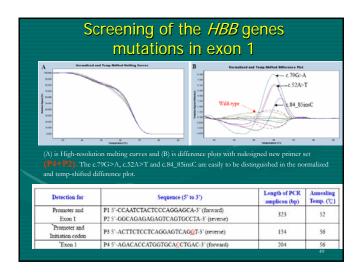


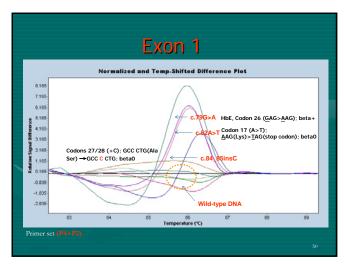


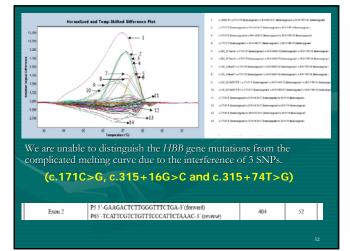

Detection for	Sequence (5' to 3')	Length of PCR amplicon (bp)	Annealing Temp. (°C)
Promoter and Exon 1	P1 5'-CCAATCTACTCCCAGGAGCA-3' (forward) P2 5'-GGCAGAGAGAGTCAGTGCCTA-3' (reverse)	323	52
*Promoter and Initiation codon	P3 5'-ACTTCTCCTCAGGAGTCAGGT-3' (reverse)	154	56
'Exon 1	P4 5'-AGACACCATGGTGCACCTGAC-3' (forward)	204	56
Exon 2	P5 5'-GAAGACTCTTGGGTTTCTGA-3' (forward) P65'-TCATTCGTCTGTTTCCCATTCTAAAC-3' (revene)	404	52
*Exon 2	P7.5'-GAGCCTTCACCTTAGGGTTI-3' (reverse)	164	56
*Exon 2	P8 5'-CTCCTGAIGCTGTTAIGGGC-3' (forward) P9 5'-AGAAAACATCAAGGGTCCCA-3' (reverse)	193	56
Intron 2	P105'-GTGTACACATATTGACCAAATCAGGGTA-3' (forward) P11 5'-GGTAGCTGGATTGTAGCTGC-3' (reverse)	293	56
Intron 2	P12 5'-ATTTATATGCAGAAATATTG-3' (revene)	223	52
Exon 3	P13 5'-CTGGATTATTCTGAGTCCAAGC-3' (forward) P14 5'-ATTAGGCAGAATCCAGATGCTC-3' (reverse)	309	52

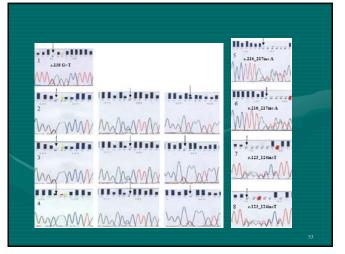


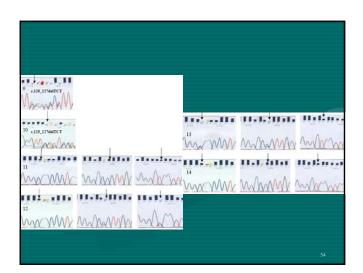

Screening of the *HBB* genes mutations: promoter and exon 1 regions

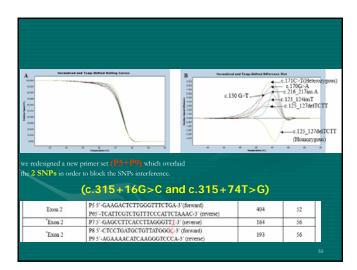


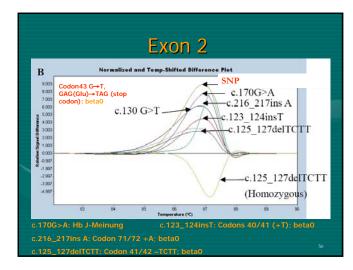


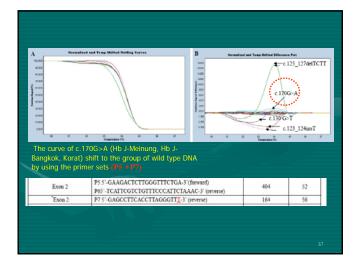


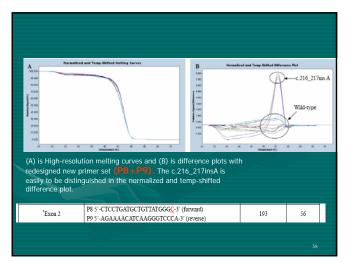


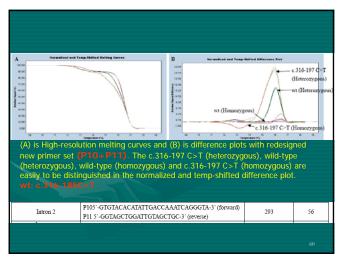


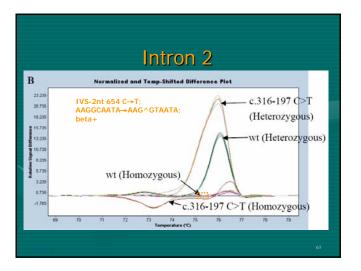


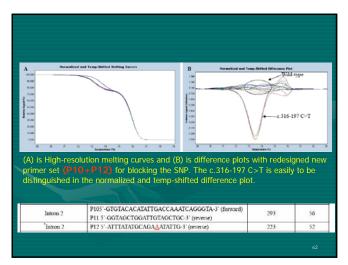


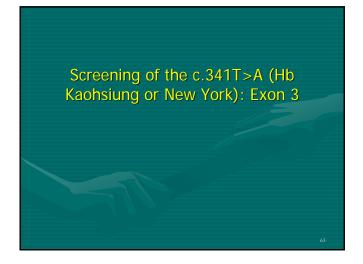


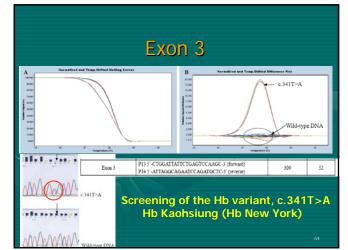












Discussion

- HRM analysis offers several benefits including lowering manpower, time-saving, and decreasing the risk of PCR carryover contamination.
- The HRM analysis is the most cost-effective in diagnostic laboratories with moderate to high patient sample volumes. This is because up to 96 or 384 DNA samples can be analyzed within 2 h by a single medical technologist (including data interpretation).
- **D** Our results suggest that HRM is a feasible and highly accurate method for the screening and identification of β -thalassemia, therefore, it could replace the currently methods applied in the screening of β -thalassemia and prenatal diagnosis

